SEMESTER: 2nd MINOR COURSE

ELT222N: ELECTRONICS (LINEAR AND DIGITAL INTEGRATED CIRCUITS)

(Credits: Theory-04, Lab-02)

Learning Objectives:

- 1. To study Operational Amplifier working, characteristics and its applications
- 2. To design simple linear and non-linear circuits using Op-Amp
- 3. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables
- 4. To describe and explain the operation of fundamental digital gates
- 5. To study the design and implementation of various combinational and sequential logic circuits

Course Outcome: After successful completion of the course student will be able to:

- 1. Design and analyze Op-Amp based circuits
- 2. Use the basic logic gates and various reduction techniques of digital logic circuits
- 3. Design combinational and sequential circuits
- 4. Analyze the operation of standard combinational circuits like encoder, decoder, multiplexer, demultiplexer, adder etc
- 5. Analyze the operation of flip-flops and examine relevant timing diagrams
- 6. Analyze the operation of counters and shift registers

Unit-I: Linear Integrated Circuits and its Applications (Theory: 4 Credits)

Characteristics of an Ideal and Practical Operational Amplifier (IC 741), Open and closed loop configuration, Frequency Response. CMRR. Slew Rate and concept of Virtual Ground. Inverting and non-inverting amplifiers, Summing and Difference Amplifier, Differentiator, Integrator, Wein bridge oscillator, Comparator and Zero- crossing detector, and Active low pass and high pass Butterworth filter (1st and second order only). (15 Lectures)

Unit-II: Number System and logic Gates

Decimal, Binary, Octal and Hexadecimal number systems, base conversions. Representation of signed and unsigned numbers, BCD code. Binary, octal and hexadecimal arithmetic; addition, subtraction by 2's complement method, multiplication. Logic Gates and Boolean algebra: Truth Tables of OR, AND, NOT, NOR, NAND, XOR, XNOR, Universal Gates, Basic postulates and fundamental theorems of Boolean algebra. (15 Lectures)

Unit- III: Combinational Logic Analysis and Design

Standard representation of logic functions (SOP and POS), Minimization Techniques (Karnaugh map minimization up to 4 variables for SOP). Arithmetic Circuits: Binary Addition. Half and Full Adder. Half and Full Subtractor, 4- bit binary Adder/Subtractor. Multiplexers, De-multiplexers, Decoders, Encoders. (15Lectures)

Unit- IV: Sequential Circuits

Introduction to 555 timers. SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. Master-slave JK Flip-Flop. **Shift registers**: Serial-in- Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (**15Lectures**)

Reference Books:

- 1. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- 2. Operational Amplifiers and Linear ICs, David A. Bell, 3rd Edition, 2011, Oxford University Press.
- 3. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- 4. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- 5. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 6. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning.
- 7. Thomas L. Flyod, Digital Fundamentals, Pearson Education Asia (1994)
- 8. R. L. Tokheim, Digital Principles, Schaum's Outline Series, Tata McGraw-Hill (1994)

Laboratory (2 Credits)

AT LEAST 7 EXPERIMENTS EACH FROM SECTION A, B AND C

Section-A: Op-Amp. Circuits (Hardware)

- 1. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
- 2. (a) To design inverting amplifier using Op-amp (741,351) & study its frequency response
 - (b) To design non-inverting amplifier using Op-amp (741,351) & study frequency response
- 3. (a) To add two dc voltages using Op-amp in inverting and non-inverting mode
 - (b) To study the zero-crossing detector and comparator.
- 4. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 5. To investigate the use of an op-amp as an Integrator.
- 6. To investigate the use of an op-amp as a Differentiator.
- 7. To design a Wien bridge oscillator for given frequency using an op-amp.
- 8. To design a circuit to simulate the solution of simultaneous equation and 1st/2nd order differential
- 9. Design a Butterworth Low Pass Active Filter (1st order) & study Frequency Response
- 10. Design a Butterworth High Pass Active Filter (1st order) & study Frequency Response

Section-B: Digital circuits (Hardware)

- 1. (a) To design a combinational logic system for a specified Truth Table.
 - (b) To convert Boolean expression into logic circuit & design it using logic gate ICs.
 - (c) To minimize a given logic circuit.
- 2. Half Adder and Full Adder.
- 3. Half Subtractor and Full Subtractor.
- 4. 4-bit binary adder and adder-subtractor using Full adder IC.
- 5. To design a seven-segment decoder.
- 6. To design an Astable Multivibrator of given specification using IC 555 Timer.
- 7. To design a Monostable Multivibrator of given specification using IC 555 Timer.
- 8. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 9. To build JK Master-slave flip-flop using Flip-Flop ICs
- 10. To build a Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 11. To make a Shift Register (serial-in and serial-out) using D-type/JK Flip-Flop ICs.

Section-C: SPICE/MULTISIM simulations for electronic circuits and devices

- 1. To verify the Thevenin and Norton Theorems.
- 2. Design and analyze the series and parallel LCR circuits
- 3. Design the inverting and non-inverting amplifier using an Op-Amp of given gain
- 4. Design and Verification of op-amp as integrator and differentiator
- 5. Design the 1storder active low pass and high pass filters of given cutoff frequency
- 6. Design a Wein's Bridge oscillator of given frequency.
- 7. Design clocked SR and JK Flip-Flop's using NAND Gates
- 8. Design 4-bit asynchronous counter using Flip-Flop ICs
- 9. Design the CE amplifier of a given gain and its frequency response.

Reference Books

- 1. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- 2. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edn., 2000, Prentice Hall
- 3. R. L. Tokheim, Digital Principles, Schaum's Outline Series, Tata McGraw-Hill (1994)
- 4. Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill.